Systems of coupled Poisson equations with critical growth

نویسندگان

  • Fabrice Colin
  • Marlène Frigon
چکیده

We establish the existence of a nontrivial solution to systems of coupled Poisson equations with critical growth in unbounded domains. The proofs rely on a generalized linking theorem due to Krysewski and Szulkin [9], and on a concentration-compactness argument since the Palais-Smale condition fails at all critical levels. Mathematical Subject Classification. 35J50, 35J55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Existence Result for a Class of Nonlinear Elliptic Systems on Punctured Unbounded Domains

We establish the existence of a nontrivial solution for systems with an arbitrary number of coupled Poisson equations with critical growth in punctured unbounded domains. The proof depends on a generalized linking theorem due to Krysewski and Szulkin, and on a concentration-compactness argument, proved by Frigon and the author. Applications to reaction-diffusion systems with skew gradient struc...

متن کامل

Asymptotic Behaviour of Ground States

We derive the asymptotic behaviour of the ground states of a system of two coupled semilinear Poisson equations with a strongly indefinite variational structure in the critical Sobolev growth case.

متن کامل

Critical and Subcritical Elliptic Systems in dimension two

In this paper we study the existence of nontrivial solutions for the following system of two coupled semilinear Poisson equations: (S) 8 < : ?u = g(v); v > 0 in ; ?v = f (u); u > 0 in ; u = 0; v = 0 on @ ; where is a bounded domain in R 2 with smooth boundary @ , and the functions f and g have the maximal growth which allow us to treat problem (S) variationally in the Sobolev space H 1 0 ((). W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003